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1. Introduction

One of the simplest ways to think about supersymmetry breaking in higher dimensions

is Scherk-Schwarz compactification [1]. Here one usually considers compactification on a

torus, and imposes periodic boundary conditions for bosons and anti-periodic boundary

conditions for fermions. As a result, in the four dimensional theory, supersymmetry is bro-

ken at the scale of compactification, 1/R; below this scale, there is no light gravitino. These

theories have other interesting features. Typically, at small radius, they have tachyons and

are T-dual to compactifications of Type 0 theories [2]. In addition, even in the tachyon-free

regime, these compactifications suffer from the Witten Kaluza-Klein instability [3]. The

significance of these features is hard to assess, however, due to the perturbative instabilities
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which arise already at one loop. Generally, it is not clear whether any of these classical

solutions correspond to stable or metastable states of the quantum theory.

The term “Scherk-Schwarz compactification” is most often used for these toroidal

compactifications, but, as we will explain in this paper, it should be applied to a broader

array of models. This more general set of constructions is obtained by modding out a

string solution by a freely acting symmetry operation that acts differently on bosons and

fermions, namely, a freely acting R symmetry.1,2 These symmetries can include rotations

in compact or in non-compact directions as well as abstract symmetries of conformal field

theories. Modding out by these symmetries can be thought of as including Wilson lines for

the spin-connection, which break supersymmetry. The reason we confine our attention to

symmetries that are freely acting is to ensure that at large radius there are no tachyons or

new light states in twisted sectors. Even then, there are often tachyons at small radius, as

one would predict from the dualities alluded to above.

In Scherk-Schwarz Models, the vacuum energy receives corrections already at one

loop [4]. In a geometrical compactification, the effective potential will typically drive the

radius towards smaller values, where tachyons start to appear in the spectrum. Recently,

however, there has been much progress in constructing stable or metastable string ground

states in supersymmetric (and nearly supersymmetric) models [5]–[14]. Crucial to these

constructions is the role of fluxes in stabilizing moduli. Much attention has been focussed

on supersymmetric compactifications of (orientifolded) IIB theories, where fluxes fix com-

plex structure moduli already at the level of a classical analysis. Kahler moduli then are

often fixed by non-perturbative effects [13]. The resulting spaces can be dS or AdS.

As we will explain, one can repeat the IIB construction with a Scherk-Schwarz pro-

jection for many Calabi-Yau manifolds. It is only necessary that the original Calabi-Yau

possess a suitable R symmetry at some point in its moduli space, and to set to zero all

fluxes which transform non-trivially under the symmetry. At the classical level, the po-

tential for the moduli which survive the projection is the same as in the model before the

projection; the absence of fixed points insures the absence of new massless particles. So

again, one can find examples where all of the complex structure moduli can be fixed by

fluxes. However, the Kahler moduli will receive corrections already in perturbation theory,

and any minimum of their potential is likely to reside at small radii (radii of order the

string scale), so one can at best speculate about the possible existence of metastable states

(much as in [15]).

An alternative possibility for fixing moduli is provided by a recent analyses of IIA com-

pactifications with fluxes [16, 17], following earlier work on IIA theories, particularly [18],

and [19] (the latter paper discussing stabilization of untwisted moduli in a particular ori-

entifold). In this case, it has been argued that, for suitable fluxes, one can stabilize all

of the moduli classically. More dramatically, it appears that there are an infinite series of

such states, with arbitrarily small string coupling and curvature. Moreover, the geometry

of the solutions turns out to be a product of 4 dimensional AdS space times a compact

1As we explain below, in practice these R symmetries are Z2’s times ordinary symmetries.
2One can also generalize the Scherk-Schwarz projection in other directions. For example one can consider

a combination of a U-duality transformation and a translation [10, 11].
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CY manifold with an arbitrarily large hierarchy between the AdS curvature radius and the

KK scale, so that unlike Freund-Rubin compactifications [20], the physics is well captured

by a 4 dimensional effective description. A subset of these states are supersymmetric. The

rest are approximately supersymmetric, in the sense that the gravitino mass is parameteri-

cally small compared to the Kaluza-Klein (KK) scale. In this paper we will show that one

can consistently apply a generalized Scherk-Schwarz projection to these models, thus con-

structing, with the same level of reliability, an infinite sequence of states with badly broken

supersymmetry, namely, where supersymmetry is broken at the KK scale. From a four

dimensional viewpoint, such generalized Scherk-Schwarz models are non-supersymmetric.

There is no scale at which the theory appears four dimensional and is (even approximately)

supersymmetric. These states provide an interesting laboratory in which to study a va-

riety of questions, including perturbative and non-perturbative stability and statistics of

non-supersymmetric states.

This paper is organized as follows. In section 2 we present a brief review of the stan-

dard Scherk-Schwarz projection [1] its application in string theory [4] and briefly explain

the duality to type 0 strings. We describe in particular how the usual Scherk-Schwarz

projection can be phrased as modding out by a freely acting discrete R-symmetry. This is

particularly transparent in the Green-Schwarz formulation; a more detailed analysis in the

RNS formalism appears in an appendix. In section 3 we consider a variety of generalizations

of Scherk-Schwarz. In section 4 we present a generalized Scherk-Schwarz projection on the

type IIA T 6/Z2
3 CY orientifold of DeWolfe et.al and Camara et al [16, 17]. We show how

the classical stability analysis carried in [16, 17] remains intact even with broken supersym-

metry, and give a formal argument that quantum correction are parameterically small.3

In the concluding section, we remark on some possible applications of these ideas. These

include developing a more general understanding of Witten’s bubble of nothing [3], and

the use of non-supersymmetric models with stabilized moduli to study questions about the

landscape. Two appendices present an RNS formulation of the standard Scherk-Schwarz

projection and an analysis of a T 6/Z3
4 CY orientifold.

There are other approaches to constructing models of broken supersymmetry in string

theory which lead to models with some similar features, such as supersymmetry broken

at the Kaluza-Klein scale (see, for example, [22], where compactification on products of

Riemann surfaces leads to models with badly broken supersymmetry). The reason for our

focus on Scherk-Schwarz models lies in their simple realizations, classically, as critical string

theories, and in some cases quantum mechanically as small distortions of such theories.

2. Scherk-Schwarz models in field theory and string theory

Consider a string theory compactified on one periodic dimension:

X ∼ X + 2πR (2.1)

3Recent work calls into question the possibility of a systematic weak coupling analysis [21].
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with left and right moving momenta given by

pL =
m

R
+
wR

2
, pR =

m

R
− wR

2
(2.2)

where m,w are integral momentum and winding quantum numbers, and we set α′ = 2.

E.g, the energy of a superstring excitation on R1,8×S1
X in the sector with winding number

w and with m units of momentum and with left (right) oscillator numbers N (Ñ ) is

m2 = 2

(
N − 1

2

)
+ p2

L = 2

(
Ñ − 1

2

)
+ p2

R = (N + Ñ − 1) +
(m
R

)2
+

(
wR

2

)2

(2.3)

subject to the level matching condition

N − Ñ +mw = 0. (2.4)

In a Scherk-Schwartz compactification [1] one imposes anti-periodic boundary condi-

tions for the spacetime fermions along the periodic coordinate X. Consequently, fermions

have half integral momenta along the circle parameterized by X. Supersymmetry is spon-

taneously broken as the bosons and fermions have different mode expansions along the

circle which translate to different energies in the dimensionally reduced model. This fact

is true already in field theory.

In string theory there are additional features [4]. Imposing anti-periodic boundary con-

ditions for fermions around the circle is equivalent to modding out by the Z2 R-symmetry

e2πiRP X

(−1)F . In order to obtain a modular invariant partition function one needs to

add the twisted sectors. These are particularly easy to understand in the Green-Schwarz

formulation4 where the space-time fermion number operator reverses the sign of the two

dimensional fields Sa.

X(σ + π) = X(σ) + w · 2πR (2.5)

Sa(σ + π) = (−1)wSa(σ).

The ground state energy in odd winding sectors is thus

m2 =

(
wR

2

)2

− 1 (2.6)

which becomes tachyonic for small enough radius. Also, this projection effectively reverses

the familiar type II GSO projection between odd and even winding sectors.5 Thus, by

imposing Scherk-Schwarz boundary conditions in type IIA/B, the bosonic spectrum is

given by (using the notations of Polchinski [23])

• w = 2w′ : (NS+, NS+), (R+, R±)

• w = 2w′ + 1 : (NS−, NS−), (R−, R∓).

4A useful trick is to think of this as a geometrical orbifold on a circle with a doubled radius 2R. The

twisted states wind half-way around that circle and acquire anti-periodic boundary conditions.
5A simple derivation of this fact appears in appendix A
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2.1 Duality with type 0

Scherk-Schwarz compactifications of type II superstrings obey a certain T-duality relation

with type 0 string theory. In the limit that R→ 0 all the spacetime fermions become very

massive because they can not have zero modes along the circle. It can be shown6 that type

IIA/B compactified on a circle of radius R with Scherk-Schwarz boundary conditions, in

the limit R→ 0, is equivalent to type 0B/A in uncompactified spacetime.

Calabi-Yau spaces are classical solutions of the Type 0 theories. One can see this in

two ways, which will be useful for us in what follows. First, at the classical level, the

field equations for the bosonic fields are the same as in the Type II theories. Therefore,

classically, solutions of the two theories coincide. Alternatively, a compactification of Type

II on a Calabi-Yau space is described by two dimensional left and right N = 2 SCFT with

c = 9. This CFT can always be used also as a sensible background of Type 0. Thus,

there are large classes of smooth manifolds which solve the classical equations of the Type

0 theory. One can even introduce fluxes, and classically, the potential for these will be as

in the Type II theories. But these constructions do not seem terribly interesting, since at

large radius they possess tachyons (at least at weak coupling), and quantum corrections will

generally destabilize them. In the next section, we will consider generalized Scherk-Schwarz

constructions with the potential to avoid these difficulties.

3. Generalizing Scherk-Schwarz

Modding out a string theory by an R symmetry will yield a string configuration with

less supersymmetry. Supersymmetry will be broken at the KK scale associated with the

compact manifold.

In this section we provide several examples of this kind of generalized Scherk-Schwarz

projections. We start with toroidal and toroidal orbifold models. These are familiar models

described by free two dimensional fields. Then we note that large classes of Calabi-Yau

compactifications, both of Type II and heterotic strings, admit such projections. These

are distinctly less trivial. In the next section, we will show that fluxes can stabilize some

or all of the moduli of such compactifications.

3.1 Scherk-Schwarz as an orbifold

The usual Scherk-Schwarz projection is a special case of the general toroidal orbifold con-

struction. As explained in [24] a class of orbifolds can be constructed as a quotient of

the Euclidean space Rd by a subgroup of rotations and translations g = (θ, v) called the

space-group S. The orbifold is the quotient Ω = Rd/S where the elements of S act on a

vector x ∈ Rd as gx = θx+v. The subgroup Λ of translations (1, v) ∈ S is called the lattice

of S. The subgroup of O(d) of rotations θ such that (θ, v) ∈ S is called the point-group. It

can be shown that each element of the point group is associated with a unique vector v

(up to lattice translation). The point-group is also the holonomy group of the orbifold. An

6More details appear in appendix B.
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orbifold with a space-group that has a non-trivial point-group can break supersymmetry

because bosons and fermions transform differently under rotations.

Scherk-Schwarz compactifications have a natural description in this language as mod-

ding out by the space group generated by two elements that include a 2π rotation and

a translation in an orthogonal direction ~e, namely, g = {(e2πiJab , 0) ; (1, 2πR · ~e)}. More

generally, take any singular limit of a CY n-fold described by an orbifold of n products

T 2 × · · · × T 2. Since the tori are smooth, the holonomy matrix is just the identification

matrix of the orbifold zi ∼ A j̄
i zj. Demanding that detA = 1 gives a CY. However, if we

demand instead that detA = e2πi then the geometry does not change, but fermions will

pick up a minus sign under the action of the orbifold. This will break supersymmetry.

In general there will be tachyons in twisted sectors located at fixed points of the orbifold.

However, if we add a translation to the space group so that the action is free, we can

avoid tachyonic instabilities at large radius. However, the radius modulus will generally

tend to decrease in size until it enters the tachyonic regime. This can be avoided in a flux

compactification. We give a detailed example of this procedure in section 4.

3.2 Smooth Calabi-Yau spaces in type II and heterotic theories

We can perform a Scherk-Schwarz projection in any Calabi-Yau space which admits a

freely acting symmetry.7 This is already possible for the familiar quintic in CP 5. Take, for

example, the quintic polynomial to be

P = z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0. (3.1)

Then the transformation

zi → αizi with α = e
2πi
5 (3.2)

is a freely acting symmetry of the theory [28]. As for the orbifold case, we can define the

action of this symmetry to flip the sign of the supercharges (covariantly constant spinor),

so that supersymmetry is broken.

If one examines, say, lists of Calabi-Yau manifolds defined in weighted projective

spaces, one can find many suitable symmetries. In all of these cases, there remains a

large moduli space, though, unlike the simplest toroidal examples, the dimension of the

moduli space is reduced. Again, it should be stressed that these are solutions of the classi-

cal equations, but quantum corrections, already in string perturbation theory, will generate

a potential for the moduli.

It should be noted that these manipulations are valid in Type II and heterotic theories.

Heterotic theories actually yield a richer set of models, since in addition to (2, 2) theories,

one has (2, 0) theories. Many of the latter admit suitable R symmetries as well [26].

7In an earlier version of this paper, we spoke of freely acting R symmetries. However, Volker Braun

has pointed out to us that in the case of Calabi-Yau three-folds, freely acting symmetries always leave the

holomorphic three-form invariant (this follows from results stated in [28]). As a result, any freely-acting R

symmetry must be at most a Z2, times some ordinary symmetry.
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4. Scherk-Schwarz version of IIA models

In this section we present a Scherk-Schwarz version of the type IIA superstring model

analyzed in [16, 17], resulting in a sequence of non-supersymmetric, tachyon free models.

We first review the supersymmetric construction, and then modify it so as to implement a

Scherk-Schwarz projection. In an appendix, we study a different orbifold.

4.1 Review of supersymmetric IIA constructions

We follow closely the notation of [16]. These authors (and those of [17] construct an infinite

set of AdS states where the string coupling and curvature can be made arbitrarily small by

choice of fluxes. They start with compactification of Type II theory on the Z3 orbifold [25].

This orbifold is a singular limit of a CY with χ = 72 obtained by starting with a T 6 defined

by the identifications

zi ∼ zi + 1 ∼ zi + α, i = 1, 2, 3; α = e
πi
3 (4.1)

and then modding out by a Z3 symmetry of this lattice defined by

zi → T j
i zj T =




α2 0 0

0 α2 0

0 0 α−4



 (4.2)

The choice of the phases in (4.2) ensures that the orbifold has SU(3) holonomy. This leaves,

in the case of Type II theories, N = 2 supersymmetry in 4 dimensions. As was noted in [25]

one can mod out by a further freely acting Z3

zi → Q j
i zj + ai Q =




α2 0 0

0 α−2 0

0 0 1



 a =
1 + α

3




1

1

1



 (4.3)

The last step reduces the supersymmetry down to N = 1.

The orientifold projection involves the symmetry

O = ΩP (−1)FLσ (4.4)

with ΩP world-sheet parity. σ is the reflection

σ : zi → −z̄i (4.5)

The effect of these transformations is to reduce the supersymmetry to N = 1 and’ to

eliminate many of the moduli of the original toroidal compactification. In the untwisted

sector, only the diagonal moduli,

gīi = vi, i = 1, 2, 3. (4.6)

survive; they are each part of a chiral multiplet, whose scalar components have the form

ti = bi + ivi. (4.7)
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There are nine twisted moduli, tA = bA + ivA.

Now one introduces a number of fluxes. There is a zero form flux. There are two-form

fluxes, three and four-form fluxes. A basis of two-form fluxes, odd under the reflection σ,

is provided by:

ωi = (κ
√

3)1/3idzi ∧ dz̄i, i = 1, 2, 3. (4.8)

There is a corresponding set of four-cycles

w̃i =

(
3

κ

)1/3

(idzj ∧ dz̄j) ∧ (idzk ∧ dz̄k). (4.9)

The three-form invariant under T and Q is:

Ω = e1/4idz1dz2dz3 =
1√
2
(α0 + iβ0). (4.10)

DeWolfe et al turn on the fluxes:

H3 = −pβ0 Fr = eiω̃
i; F0 = m0. (4.11)

A simple analysis leads to a potential for the moduli:

V =
p2

4

e2φ

vol2
+

1

2

(
3∑

i

e2i v
2
i

)
e4φ

vol3
+
m2

0

2

e4φ

vol
+

√
2m0p

e3φ

vol3/2
. (4.12)

Here vol = κv1v2v3. The potential has a local minimum:

vi =
1

|ei|

√
5

3
|e1e2e3
κm0

| eφ =
3

4
|p|
(

5

12

κ

|m0e1e2e3|

)1/4

. (4.13)

Refs. [16, 17] also show that the moduli associated with the fixed points can be stabilized

as well. They work out explicitly the geometry of the smooth manifold, and show that,

introducing suitable four-form fluxes associated with the fixed points, the corresponding

moduli have minima where the manifold is smooth.

Ref. [16, 17] then gave a purely four dimensional description of all of this, in terms of

a theory of light chiral fields, whose lagrangian is described by a Kahler potential and a

superpotential. In this analysis, they included two-form fluxes, mi. These can be used to

tune the axions (if the two form fluxes vanish, so do the axion fields). We won’t reproduce

their full equations for the superpotential, but will focus on the piece involving the ta fields,

and only in the special case that the ma’s all vanish:

WK(ta) = e0 + eat
a − m0

6
κabctatbtc. (4.14)

The Kahler potential for these fields is:

KK(ta) = − log

(
4

3
κabcvavbvc

)
. (4.15)
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Here the quantity κabc is the triple intersection,

κabc =

∫
ωa ∧ ωb ∧ ωc. (4.16)

The resulting equations for the va’s are:

3m2
0κabcvbvc + 10m0ea = 0. (4.17)

In the case of the Z3 orbifold, these equations are simple to analyze. This is because

κabc breaks up into distinct pieces involving untwisted and twisted moduli. In [16, 17], an

argument is given for this based on the geometry, but there is another way to understand

this selection rule. The model has a “quantum symmetry”[27], a Z3, under which the fields

in the sector twisted once by T transform with a phase e2πi/3, while there antiparticles

in the doubly-twisted sector transform by e−2πi/3. κ determines the prepotential of the

N = 2 theory (before the orbifold projection). This potential is holomorphic in the fields,

and must be invariant under the Z3. As a result, only terms with zero or three twisted

fields are non-vanishing, and the equations for the untwisted and twisted moduli decouple.

DeWolfe et al denote these by the indices i and A, respectively, so they are able to take

κ123 = κ; κAAA = β. (4.18)

In this way, they are able to find supersymmetric solutions, corresponding to the solutions

above, for certain choices of the signs of the ei’s, and fA’s (the four-form fluxes at the fixed

points):

vi =
1

|ei|

√
−5e1e2e3

3m0κ
vA =

√
−10fA

3βm0
. (4.19)

The potential of eq. (4.12) is quadratic in the e’s and f ’s, so the location of the minima

is independent of the signs of the fluxes. But only for some choices of signs are there

solutions, as in eq. (4.19); the minima for other choices of flux are not supersymmetric.

But they are approximately so. The gravitino mass is of order:

m3/2 = eK/2W ≈ |e|−3/4|e|−3/2|e|3/2 ∼ |e|−3/4. (4.20)

Here the first |e|−3/2 factor arises from the Kahler potential for the dilaton. This is to

be compared to the Kaluza-Klein scale, which is 1/
√
v ∼ |e|−1/4. So the gravitino is iso-

lated from the Kaluza-Klein tower, i.e. there is a range of energy scales with a single, light

gravitino, and the theory has an approximate supersymmetry at low energies.

4.2 A T 6/Z2
3 orbifold with a generalized Scherk-Schwarz projection

The model of [16, 17] admits an immediate generalization. These authors performed two

orbifold projections, both to reduce the supersymmetry to N = 1, and to obtain a com-

paratively small number of moduli. We will also perform two projections, the first one is

the same as in [16, 17] and the second is a slight variation which implements the Scherk-

Schwarz projection. This will allow us to eliminate all supersymmetry, while obtaining

essentially the same set of moduli.
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We thus start with the standard Z3 orbifold described in the previous section in equa-

tions (4.1)–(4.3). Our generalized Scherk-Schwarz projection involves taking, in the second

step, a slightly different matrix:

zi → Q̃ j
i zj + ai Q̃ =




α2 0 0

0 α4 0

0 0 1



 a =
1 + α

3




1

1

1



 (4.21)

Gravitinos with zero momentum will pick up a minus sign, due to the overall 2π rotation

in the internal tori, under this transformation. (Equivalently, under parallel transport

around the non-contractible loop which in the original T 6/Z3 orbifold connected the two

fixed points at (0, 0, 0) and
(
(1 + α)/3, (1 + α)/3, (1 + α)/3

)
, the gravitino picks up a

phase, −1.) So the last orbifolding breaks supersymmetry. The Z3 orbifold (4.1)–(4.2) is

supersymmetric and so has no tachyons in the spectrum. Only the last orbifold by (4.21)

breaks supersymmetry, but this transformation acts freely due to the translation in the

third T 2. So the mass terms in the twisted sectors associated with (4.21) will not have

tachyons at large radius.

4.3 Moduli stabilization

The projectors in this model are almost the same as those of [16, 17]. They differ only

in their action on space-time fermions. As a result, the moduli are the same as those

of [16, 17]. Moreover, the fluxes are the same as well. The moduli include the diagonal

components of the metric

gīi ≡ γi. (4.22)

The forms include a set of 2-forms

ωi ∝ dzi ∧ dz ī (4.23)

invariant under (4.2), (4.21) and odd under the spacetime reflection (4.5). There are 3

NSNS 2-form moduli bi with B2 = biω
i that combine with (4.22) to form 3 complex

moduli. The holomorphic 3-form invariant under (4.2), (4.21) is again (4.10) with the O6

plane wrapping the even cycle α0. Finally, the dilaton joins the RR 3-form axion ξα0 to

form a fourth complex scalar. As a result, the potential for the untwisted moduli is again

given by eq. (4.12) with minima given by eq. (4.13). Also the stability analysis for the

twisted moduli carries through in the exact same way as in [16, 17].

To recapitulate, we used a flux compactification to stabilize all the moduli, so that

by taking a large enough CY orientifold we can ensure that there are no tachyons in

the spectrum, and this non-supersymmetric compactification is perturbatively stable. An

alternative model based on a Z4 orbifold is described in appendix A.

4.4 Quantum corrections

One might worry that quantum corrections in such non-supersymmetric models would be

large due to the lack of supersymmetry, either destabilizing the would-be AdS vacua, or

simply making any analysis impossible. After all, there are no longer non-renormalization
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theorems, and the effective cutoff for loop diagrams is at least as large as the Kaluza-Klein

scale. But, as in the supersymmetric case, higher order corrections appear to be suppressed

by powers of the four form flux, as we now show.

Classically, the potential for the volume moduli vi behaves as

V0 =
e2φ

v6
(4.24)

at the minimum. It is important to note that this result is expressed in Planck units, i.e.

it is multiplied by M4
p . If we translate this into the mass of the scalar, we need to recall

that the scalar kinetic term is proportional to 1/v2, so the tree level mass behaves as

m2
0 =

e2φ

v6
M2

p =
1

v3
M2

s . (4.25)

Let’s compare with what we might expect at one loop. We can estimate these effects

in two equivalent ways. First, consider a Casimir computation. In string frame, this will

give a result of the form

δV ∼ 1

R4
∼ 1

v2
M4

s . (4.26)

so

δm2 ∼ e2φ 1

v5
M2

s . (4.27)

The, the loop correction is suppressed by 1/v3 ∼ |ei|−3/2 and for large four-form flux, the

corrections are under control.8

This analysis is arguably naive. It is not known how to perform a string perturbation

expansion for these configurations, and the work of [21] suggests that this might not be

possible. We simply note here that the low energy theory, viewed as a cutoff field theory,

appears to be under control.

This example shows that there are models with badly broken supersymmetry but where

classically all the moduli are stabilized. Our basic strategy was to note that the Scherk-

Schwarz projection does not change the classical equations for the bosonic fields, and these

can be shown in some cases to be subject to small quantum corrections. In appendix A we

present a closely related Z4 × Z4 CY orientifold, where again we are able to break susy at

the KK scale while retaining perturbative stability.

5. Conclusions: potential applications

We have seen that it is possible to generate a wide array of non-supersymmetric string

configurations using a generalized notion of Scherk-Schwarz projection. Models of this

type should be useful theoretical laboratories for studying a number of questions. To

conclude, we mention some areas for further study.

8Alternatively, we can consider a direct computation of the mass. For this we can work with canonically

normalized fields. There is a one loop correction to the mass involving emission of a graviton. This

correction is quadratically divergent; we expect that it is cut off at 1/R. So the size of the mass correction

is δm2 ≈ GN
1

R4 = e2φ 1
v5M

2
s as above.
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5.1 Non-perturbative instabilities with stabilized moduli

Kaluza-Klein spaces with standard Scherk-Schwarz boundary conditions suffer from a non-

perturbative instability to decay into a “bubble of nothing”, even in the regime where the

size of the orbifold is big and there are no winding tachyons. The instability was derived

by Witten in [3] using an analytical continuation of the Schwarzschild solution. In most

applications, the significance of this solution is obscure for a variety of reasons, perhaps

the most important being that the classical, non-supersymmetric string or field theory

Kaluza-Klein solutions are already unstable in perturbation theory.

The IIA models offer promise of studying this question, as all of the moduli are stable.

Presumably, the Witten bounce in this case is associated with the non-contractible loops

introduced by the Scherk-Schwarz projection. Efforts to construct such solutions in states

with all moduli fixed will be reported elsewhere.

5.2 The landscape

Non-supersymmetric models with fluxes of the type described here provide an arena for

examining landscape statistics. There are a variety of questions which one might try to

address. These include raw counting, e.g. trying to compare numbers of supersymmetric

and non-supersymmetric states with various properties. In the IIA case, for large fluxes,

the states, classically, are AdS, and small quantum effects will not change this. We have

noted that non-supersymmetric IIB theories are more challenging to study than their su-

persymmetric counterparts. The complex structure moduli are fixed, classically, as in the

supersymmetric case, but the Kahler moduli will have potentials already in perturbation

theory, and stationary points will typically lie at small radius. One would expect, however,

that such states would exist, and that some will be dS, some AdS. More refined questions

include counting of states with discrete symmetries and with exponentially large warping

(we thank Steve Giddings for a discussion which led us to consider this application). Stud-

ies of supersymmetric vacua [14], for example, having indicated that exponential warping

occurs in a substantial fraction of states. The models described here with most or all mod-

uli stabilized provide a further laboratory for investigating this question. It seems likely

that one will again find that exponential warping is common. This might suggest that

non-supersymmetric vacua with warping are more likely solutions of the hierarchy problem

than supersymmetric ones. Of course, whether this can be reconciled with other facts of

low energy physics is an important question.
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A. Generalized Scherk-Schwarz in a Z
3

4
example

In this section we consider a Z4 × Z4 orbifold. We start from a T 6 defined by

zj ∼ zj + 1 ∼ zj + i j = 1, 2, 3 (A.1)

and mod out by a Z4 × Z4 symmetry

zi → A j
i zj with A =




i 0 0

0 −i 0

0 0 1



 and (A.2)

zi → B j
i zj with B =




i 0 0

0 1 0

0 0 −i





There are many fixed points (some of which are only fixed under Z2 subgroups). This

orbifold model is consistent with the same orientifold projection employed in [16] and

described here in eq. (4.4). The Z4×Z4 torus orientifold keeps precisely the same untwisted

moduli as in [16]. It is fairly straightforward to check that the stabilization analysis of the

untwisted moduli for this model precisely follows the analysis carried by DeWolfe et.al

in [16]. As a result, the potential for the untwisted moduli has a form identical to that of

the Z3 case (reproduced here in eq. (4.12)), with similar minima given by eq. (4.13).

To achieve Scherk-Schwarz compactification, one can now orbifold this model by a

freely acting Z4

zi → C j
i zj + ai with C =




e

πi
2 0 0

0 e
3πi
2 0

0 0 1



 and a =
1 + i

2




1

1

1



 . (A.3)

For this Z3
4 CY orientifold, just like in the Z2

3 case, susy is broken at the KK scale, and

the fluxes can stabilize the geometry to a safe size where the spectrum is free of tachyons.9

Again, an effective field theory analysis suggests that the quantum corrections are small.

To complete the stabilization analysis one needs to study the stabilization of blow up

modes at the various fixed points of this orbifold. The analysis is more complicated in

this case, because there are many more sectors to consider, with a more intricate pattern

of couplings. We see no reason to believe that one cannot fix the moduli in a controlled

fashion, as in the Z2
3 case [16].

B. Type 0 and Scherk-Schwarz in RNS

B.1 Projections in operator language

The usual treatment of type 0 string theory [2], is based on modular invariance of the

partition function. One of the interesting features of type 0 models is their duality relation

9Again, modulo possible surprised from blow up modes which where not analyzed.
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with Scherk-Schwarz compactifications [4], or compactification on “twisted circles” as they

are sometime called, when the radius of the twisted circle goes to zero. This duality relies

on the existence of winding tachyons in Scherk-Schwarz compactifications due to a reversal

of the GSO projection in odd winding sectors, as explained e.g. in [29]. In this appendix

we present an equivalent treatment in operator language. The reason for doing so is that

in this language the modified GSO projection in odd winding sectors as well as the relation

to type 0 string theory is particularly transparent. The basic premise we use is that to

ensure the consistency of a worldsheet sigma model as a string background one must make

sure that

(A) All the operators of the worldsheet sigma model are mutually local.

(B) The operator algebra is closed.

(C) Left-right level matching in imposed.

Projections are carried out by demanding that an operator O that enforces the projection

via its OPE with the rest of the operator algebra, is part of the worldsheet SCFT. Condition

A projects on invariant states while condition B will then generate twisted sectors.

For example, the type II GSO projection is arrived at by demanding mutual locality

and closure with the spacetime supercharges. Similarly, if we want to describe a compact-

ification of type II on a circle (2.1) we add to the SCFT the two operators

R(z, z̄) ≡ ei
R

α′

(
X(z)−X̃(z̄)

)
(B.1)

and

M(z, z̄) = ei
1
R

(
X(z)+X̃(z̄)

)
(B.2)

and follow the steps mentioned above. This will project on the correct momentum lattice,

via OPE with eipLX(z)eipRX̃(z̄), and create the winding and momentum sectors.

B.2 The type 0 projection

Let us examine what happens when we start from a type II superstring on R1,9. The

holomorphic spacetime supercharges are built out of the bosonized fermions H1, . . . ,H5

and the reparameterization superghost ϕ as

Qα =

∮
e−

ϕ

2 e
i
2
(ǫ1H1+···+ǫ5H5) (B.3)

where α = [ǫ1, . . . , ǫ5] is a spinor index of SO(1, 9) and each H bosonizing a pair of fermions,

say ψ1,2, according to the familiar formulas

ψ1 =
√

2 cosH, ψ2 =
√

2 sinH, ψ± ≡ 1√
2

(
ψ1 ± iψ2

)
= e±iH (B.4)
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Demand now that the worldsheet CFT includes the following operator10 11

T (z, z̄) = ei
(
H(z)−H̃(z̄)

)
. (B.5)

The fact that T (z, z̄) is not a chiral operator suggests that the resulting theory will

not respect the chiral GSO projection. In fact, we will now show that the resulting theory

is the well known type 0 model. Using the standard relation

: eiaX(z) :: eibX(w) := (z − w)ab : ei
(
aX(z)+bX(w)

)
: (B.6)

it is clear that all the operators in the (NS,NS) sector are mutually local with T (z, z̄).

However, spin fields Sα ≡ e
i
2
(ǫ1H1+···+ǫ5H5) (as well as their anti-holomorphic counterparts)

have a square root branch cut in their OPE with T (z, z̄). This means that in the resulting

theory there are no operators in the (R,NS), (NS,R) sectors, and hence no spacetime

fermions. Moreover, since the spacetime supercharges (B.3) have been projected out, we

no longer have the usual chiral GSO projection and in particular the (NS,NS) vacuum

corresponding to a tachyon in spacetime survives the projection.

What about the (R,R) sector? Starting from a type II superstring model we see that

any pre-existing (R,R) vertex operator survives the projection

T (k)(z, z̄) ·Sα(w)S̃α̇(w̄) ∼ (z−w)ǫ1/2(z̄− w̄)−ǫ̃1/2 · · · = |z−w|ǫ1(z̄− w̄)−(ǫ̃1+ǫ1)/2 . . . (B.7)

and since (ǫ̃1 + ǫ1)/2 ∈ Z there is no branch cut. However, The (R,R) spectrum is

doubled. The worldsheet fermions act on the spinfields as spacetime Γ matrices and so the

“twisted sectors” which one gets on the r.h.s. of (B.7) are (R,R) vertex operators where

the spacetime chiralities are flipped both for the left and right movers.

To summarize,12 If we started from type IIA/B with the sectors

• IIA: (NS+, NS+), (R+, NS+), (NS+, R−), (R+, R−)

• IIB: (NS+, NS+), (R+, NS+), (NS+, R+), (R+, R+),

demanding that (B.5) is part of the worldsheet CFT projects the theory onto

• 0A: (NS+, NS+), (NS−, NS−), (R−, R+), (R+, R−)

• 0B: (NS+, NS+), (NS−, NS−), (R−, R−), (R+, R+)

which is exactly the type 0 projection.

10Note that this is not a physical operator and should not be confused with a very similar physical

operator in the (−1,−1) picture given by e−ϕ−ϕ̃ψ+ψ̃−.
11In fact, the closure of the OPE algebra shows that it does not really matter if we use any combination

of the form ei

`

Hk(z)±H̃l(z̄)
´

with k 6= l. We thus refer to this operator simply as (B.5) without specifying

the labels k, l or the relative sign.
12Following the notations used by Polchinski in section 10 pages 26-27 of [23]
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B.3 Scherk-Schwarz projection

A worldsheet operator realization of Scherk-Schwartz boundary conditions for type II super-

strings can be achieved by adding to the type II worldsheet algebra the combined operator

P (z, z̄) ≡
[
R · T

]
(z, z̄). (B.8)

where R,T where defined in (B.1), (B.5). In words, this operator insists that when we cre-

ate a winding mode we must accompany each winding with the operator that performs the

type 0 projection. Let us examine the effect of inserting (B.8). Mutual locality with (B.8)

projects out the zero momentum vertex operators (B.3) thus breaking spacetime super-

symmetry.

However, this model does have spacetime fermions. Working out the OPE of (B.8)

with an (R,NS) vertex operator that carries some momentum along the circle (pL,R where

defined in (2.2))

V(z, z̄) ∼ e
i
2
(ǫ1H1+···+ǫ5H5)eipLXeipRX̃ (B.9)

we get the following (possible) branch cut in z

P (z, z̄) · V(z, z̄) ∼ zm+ 1
2 · · · (B.10)

with the conclusion that in order for this vertex operator to be projected in (giving a

physical spacetime fermion state) we must restrict

m ∈ Z +
1

2
. (B.11)

Physically, this is just the familiar Scherk-Schwarz projection where fermions have anti-

periodic boundary conditions (and therefore half integral momenta) along the circle.

So far we have checked mutual locality with (B.8) which in the language of orbifolds,

is the projection on invariant states. The twisted sectors arise by closing the OPE algebra

with (B.8). Let us examine the bosonic spectrum (suppressing the (R,NS), (NS,R) sec-

tors). At the w = 0 sector we have the usual type II spectrum (NS+, NS+), (R+, R±)

depending on whether we are in type IIA/B. For example we have the graviton vertex

Gij(z, z̄) ≡ e−ϕ−ϕ̃ψiψ̃j . (B.12)

Going to the first twisted sector w = 1 we have to perform the OPE not with R (eq. (B.1))

as if we are doing a “normal” circle but with P (eq. (B.8)). The leading singular term will

have the T in P contract against the fermions in (B.12) leaving us with the vertex operator

of a winding tachyon

e−ϕ−ϕ̃ · R̂ (B.13)

In the (R,R) sector, the effect of T is to flip the chiralities on both the left and

right movers, so we end up in the w = 1 sector13 with (NS−, NS−), (R−, R∓). It is

straightforward to see that this picture persists to higher winding sectors:

13This phenomenon is sometime referred to by saying that the GSO projection is reversed in the odd

winding sectors, but one should be careful about this phrasing because in type 0 theories the GSO is not

chiral and the reversing happens in each chirality separately.
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• w = 2w′ : (NS+, NS+), (R+, R±)

• w = 2w′ + 1 : (NS−, NS−), (R−, R∓).

This demonstrates the reversal of the GSO projection in odd winding sectors.

B.4 Scherk-Schwarz on a vanishing circle

Let us see what happens in the limit that R → 0. Naively in this limit the operator (B.1)

is just the identity so P becomes the type 0 projection T and we expect to get a type

0 model. This sloppy argument actually gives the correct answer. In this limit all the

spacetime fermions become very massive because they can not have zero modes along the

circle. Furthermore, given an integer w′, the successive winding sectors w = 2w′, 2w′ + 1

are almost degenerate when R≪ α′ = 2

• w = 2w′ : (NS+, NS+), (R+, R±) −→ m2 =
(

2w′R
2

)2 − 1

• w = 2w′ + 1 : (NS−, NS−), (R−, R∓) −→ m2 =
( (2w′+1)R

2

)2 − 1.

Neglecting the difference ∆m2 = R2/4 we see that the spectrum in those two successive

sectors combined is that of the w′ winding sector of the corresponding type 0 theory com-

pactified on a circle with twice the radius R′ = 2R. In the limit R → 0 this become exact

and it makes more sense instead of talking about the type 0A/B model on a vanishing

circle to describe the model as type 0B/A in uncompactified spacetime.
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